1. alpha (α) amino acids

- amino acids contain an amino group at the α-position relative to the carboxylic acid group
- there are 20 naturally-occurring amino acids that vary by the nature of the R group
- 19 of the amino acids are chiral because of the stereogenic α carbon with the exception of glycine (R=H)
- the R groups can be roughly categorized into 4 types: nonpolar, polar, acidic and basic
- humans can synthesize 10 of the amino acids from scratch, the other 10 (essential amino acids) must be derived from diet

2. Properties of α-amino acids

- pH > IP, the CO2- group remains deprotonated, and the NH3+ group becomes deprotonated so that the amino acid is overall negatively charged
- pH < IP, the CO2- group becomes protonated, and the NH3+ group remains protonated so that the amino acid is overall positively charged

A. What form predominates for lysine (IP = 9.74) in a solution of pH = 6?

B. An amino acid is predominantly negatively charged in a solution of pH = 8.2. What must be true about its IP?
The 20 Common Naturally-Occurring α-Amino Acids found in Proteins

* by the name denotes essential amino acids

amino acids with non-polar side chains

- **Glycine**
 - Gly or G
 - IP = 5.97

- **Alanine**
 - Ala or A
 - IP = 6.01

- **Valine**
 - Val or V
 - IP = 5.96

- **Leucine**
 - Leu or L
 - IP = 5.98

- **Isoleucine**
 - Ile or I
 - IP = 6.02

- **Methionine**
 - Met or M
 - IP = 5.74

- **Proline**
 - Pro or P
 - IP = 6.30

- **Phenylalanine**
 - Phe or F
 - IP = 5.48

- **Tryptophan**
 - Trp or W
 - IP = 5.89

amino acids with polar side chains

- **Asparagine**
 - Asn or N
 - IP = 5.41

- **Glutamine**
 - Gln or Q
 - IP = 5.65

- **Serine**
 - Ser or S
 - IP = 5.68

- **Threonine**
 - Thr or T
 - IP = 5.60

- **Tyrosine**
 - Tyr or Y
 - IP = 5.66

- **Cysteine**
 - Cys or C
 - IP = 5.07

amino acids with polar and acidic side chains

- **Aspartic Acid**
 - Asp or D
 - IP = 2.77

- **Glutamic Acid**
 - Glu or E
 - IP = 3.22

amino acids with polar and basic side chains

- **Arginine**
 - Arg or R
 - IP = 10.76

- **Histidine**
 - His or H
 - IP = 7.59

- **Lysine**
 - Lys or K
 - IP = 9.74
3. Analysis of amino acids: electrophoresis

- all 20 amino acids have a unique pI
- electrophoresis exploits this difference and the resulting differences in behavior in response to an electric field to separate amino acid mixtures for analysis
- in cases where pI's are particularly close (e.g., glycine [MW = 75] pI = 5.97, leucine [MW = 131] pI = 5.98) differences in molecular weight also have an impact on rate/extent of movement

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine</td>
<td>9.74</td>
</tr>
<tr>
<td>Alanine</td>
<td>6.02</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>3.22</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>5.66</td>
</tr>
</tbody>
</table>

buffer pH = 6.0

4. Synthesis of amino acids

A. Hell-Volhard-Zelinsky synthesis via α-bromination of carboxylic acids

1. PBr₃, Br₂
2. H₂O

B. Strecker synthesis from an aldehyde with one fewer carbon atoms

- in the absence of a chiral environment, racemic mixtures are necessarily formed from both methods of AA synthesis

Problems: 1, 2, 3, 4
5. Making peptides

CO₂H group from one α-amino acid NH₂ group from another α-amino acid

- amide bond formed: peptide bond
- considered to be a "dipeptide"
- most often written with amino acid with the "free" NH₂ group at the left (N-terminal residue) and AA with free CO₂H group at the right (C-terminal residue)

Problem 1: need to convert OH of carboxylic acid group into a leaving group

Problem 2: need to limit reaction to one of the CO₂H groups and one of the NH₂ groups

To make a dipeptide from Alanine and Glycine:

* in order to ensure that only one CO₂H group and one NH₂ group react, the other groups must be protected from reaction
• using these methods and judicious protection/deprotection, dipeptides, tripeptides, tetra, penta, etc. (i.e., polypeptides) may be constructed sequentially
• proteins are polypeptides with ~50 AA residues. Proteins on average have 300 AA residues but can incorporate as many as 30,000
• the entire process has been mechanized via the Merrifield synthesis method that makes use of polymer supports
Determining the primary structure of a peptide

A. Short-chain polypeptides

- the primary structure of a peptide or protein is the sequence of amino acids (from N-terminal residue to C-terminal residue) that make up the peptide chain

\[
\begin{align*}
\text{Try–Gly–Gly–Phe–Leu} & \quad \text{Gly} \quad \text{Leu} \quad \text{Try} \\
& \quad \text{Phe} \quad \text{Gly}
\end{align*}
\]

Leucine enkephalin
found in the brain; interacts with the same receptor as morphine and helps to control pain

- complete simultaneous cleavage of all of the peptide bonds is possible
- all sequencing information is lost

\[
\text{H}_2\text{N–Tyr–Gly–Gly–Phe–Leu–CO}_2\text{H} \xrightarrow{\text{selectively cleave N-terminal residue}} \text{Tyr} + \text{H}_2\text{N–Gly–Gly–Phe–Leu–CO}_2\text{H}
\]

- sequential removal of one AA at a time taking advantage of the free NH\textsubscript{2} group allows for identification of the N-terminal residue specifically
- is successful for determining sequence of ~ 50 AA's
- similar selective C-terminal residue analysis is also possible

B. Long-chain polypeptides

- the primary structure of long chain proteins can be accomplished via partial hydrolysis of the polypeptide into shorter chains (<50 AAs in length) that can be sequenced as above
- the individual short chains then need to be stitched together in a logical manner to provide the full sequence

\[
\begin{align*}
\text{unknown polypeptide} & \quad \text{Phe–Gln–Asn} \quad \text{Asn–Cys} \quad \text{Cys–Pro–Arg} \\
& \quad \text{Arg–Gly} \quad \text{Cys–Tyr} \quad \text{Tyr–Phe–Gln}
\end{align*}
\]

1 Tyr, 2 Cys, 1 Phe, 1 Pro
1 Gln, 1 Gly, 1 Arg, 1 Asn

- polypeptides greater in length than ~ 50 AAs = proteins

Problems: 5,6
7. Secondary Structures of Proteins

- **Protein secondary structure**: general three-dimensional forms of local segments of proteins (e.g., alpha helices and beta sheets)

 - right-handed
 - ~3.6 AA per turn
 - NH of each AA is hydrogen bound to the C=O 4 units away
 - R groups point outward

- two or more protein chains line up side by side
- hydrogen bonding between NH and C=O of neighboring strand
- alkyl groups are generally positioned above and below the sheet

![Figure 25.12](image.png)

Symbols used when illustrating the secondary structure of proteins: (a) an α-helix and (b) a β-pleated sheet.

8. Tertiary Structure of Proteins

- the protein's overall geometric shape
- non-regular but not random
- most stable arrangement for that sequence of AA residues
- hydrogen bonding and S-S [disulfide bonds between cysteine residues] play the major role in structural stability
- generally, the structure of enzymes have polar groups directed towards the outside of the structure, and nonpolar groups directed towards the interior which allows for water solubility
- change in solvent, pH, or temperature can alter the shape of the protein (unfolding), which is called "denaturization" and is generally irreversible

- the tertiary shape of the protein determines its behavior and specificity by creating "pockets" or "active sites" within the structure that recognize specific types of compound
Example: human cholinesterases in complex with tacrine

• part of a study to find drugs to aid in the battle against Alzheimer's disease
• tacrine was one of the first drugs to be found beneficial in the treatment of Alzheimer's disease, although it has been discontinued since 2013 due to concerns over safety
• human cholinesterase (PDB ID 4BDS) is a protein (enzyme) with 529 AA residues